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Rice is one of the most important food crops, serving as a staple food for billions of people 
worldwide, particularly in India. As global population growth drives, the demand for food is 

increasing continuously, therefore sustainable rice management practices are essential for ensuring 
increased productivity along with maintaining environmental sustainability. Precision agriculture, 
incorporating advanced technologies such as remote sensing and machine learning algorithms, offers 
cost effective solutions for optimizing nutrient management by estimating soil physicochemical 
properties and soil nutrients for enhancing rice yield in a cost-effective and environmentally 
sustainable manner. In addition, the estimation of rice yield well before the crop harvest may help 
in policy decision and also in optimizing the management options. Currently following problems 
exist in real time spatial data excess and analysis. (i) Lack of high-resolution, cost-effective data for 
estimating soil and plant attributes (ii) Limited usage of machine learning models for providing 
solution at granular scale. 
This research bulletin addresses several critical research gaps in sustainable rice management like 
limited exploration of estimation of soil parameters, particularly soil organic carbon (SOC) and 
plant nutrients like nitrogen (N) using multispectral imagery acquired from (Unmanned Aerial 
Vehicle) UAV mounted sensors combined with machine learning models. 
This bulletin focuses on application of remote sensing technologies, particularly UAV-mounted 
sensors, to estimate rice leaf nitrogen content and soil organic carbon content and prediction of rice 
yield at panicle initiation stage of rice crop. 
This bulletin would contribute in not only reducing the need for expensive and time-consuming 
methods for plant and soil nutrient laboratory analyses but also provides modelling solution for 
real-time site-specific N recommendation at critical stage of crop requirement for increasing the 
nitrogen use efficiency. Site specific N management may help in minimizing excessive fertilizer use 
particularly nitrogen, reducing environmental pollution and maintaining or improving yield. These 
developed technologies are adaptable for smallholder farms as well as large scale rice production 
systems. The solutions provided in the bulletin may aid in decision making for policy makers and 
insurance sectors through advanced machine learning models, improving yield prediction accuracy 
of rice crop.
We hope this research bulletin will serve as a valuable resource for researchers, policymakers and 
farmers in their pursuit for improving nutrient use efficiency and rice productivity while maintaining 
environmental sustainability.
We extend our sincere gratitude to the Director, ICAR-Central Rice Research Institute (CRRI) for 
providing the necessary infrastructure and resources for conducting this study. Authors would also 
like to express their sincere gratitude to ICAR-Network Program of Precision Agriculture (NePPA) 
for providing financial support for conducting the studies. Sincere thanks to The Royal Norwegian 
Embassy, Norway for funding RESILIENCE project through which funding support for procurement 
of Drones, sensors and software was provided. Special thanks to the farmers at Prahrajpur and 
Dakhinasailo villages for their cooperation and field support. Authors are also appreciating the 
assistance provided by Sasmita Samal, Biswajit Mohapatra, Sambit Kumar Mallick, Chandrasekhar 
Behera, Chandan Kumar Ojha and Surya Prasad Lenka in executing the field experiments and 
assisting for analysis of the soil and plant samples.
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1. INTRODUCTION
With the global population projected to reach around 9 billion by 2050, food 
demand is expected to rise significantly, necessitating efficient soil and nutrient 
management along with inclusion of advanced production technologies for higher 
yield productivity to ensure food security and environmental sustainability. 
To achieve sustainable rice production, it is essential to improve soil health and 
optimize the efficiency of agricultural inputs. Enhancing soil parameters, such as soil 
organic carbon (SOC) is important as it plays a vital role in ecosystem resilience and 
productivity, but human land use changes have led to significant SOC loss. Similarly, 
agricultural inputs like nutrient management particularly nitrogen (N) is a critical 
parameter in crop growth and productivity. However, improper N application can 
lead to inefficiencies and environmental losses. Precision management practices 
play a critical role in enhancing rice yields by optimizing resource utilization and 
minimizing inefficiencies. Traditional laboratory methods for estimating SOC 
and N content are costly and time-consuming (Qiu et al., 2021; Loria et al., 2024), 
thereby remote sensing techniques, particularly satellite remote sensing and drone-
based spectroscopy, combined with machine learning models like Random Forest 
and Artificial Neural Networks, provide cost-effective, high-frequency monitoring 
and accurate yield predictions, overcoming the limitations of traditional methods 
(Tripathi et al., 2024a; Sun et al., 2025). Drone, with their ability for precise 
data acquisition and minimal atmospheric interference, are increasingly used in 
agricultural monitoring over satellite based remote sensing, offering a promising 
solution for improving crop productivity and sustainability. Drone mounted with 
multispectral sensors can be used for reliable estimation of soil parameters (SOC) 
and crop nutrient status, offering real-time, site-specific nutrient management 
particularly N (Tripathi et al., 2024b; Tripathi et al., 2017), enabling plot-specific 
N topdressing recommendations for smallholder farms to enhance rice yield in an 
ecologically sustainable manner. Given that rice is a staple crop for over 70% of the 
Indian population, accurate and timely yield forecasting is essential for effective 
resource allocation, informed food policy decisions and strategic crop management 
(Zhang et al., 2019; Tripathi et al., 2025a). Such forecasts enable policymakers and 
farmers to anticipate yield fluctuations, plan for optimal input application, and 
implement adaptive management strategies. 



Drone and Sensors for Non-contact Estimation of Soil and Plant Attributes

C
R

R
I R

es
ea

rc
h

Bu
lle

tin
 N

o.
 6

1

2

2. Research Gaps
•	 Limited exploration of non-contact estimation of soil parameters 
•	 Less studies focusing on usage of drones and sensors for estimating plant and 

soil parameters
•	 Limited use of machine learning models combined with high resolution 

imageries from drone mounted sensors for non-contact estimation of soil and 
plant attributes

•	 Lack of high-resolution, cost-effective methods for spatial estimation and 
mapping of soil physicochemical parameters. 

•	 Need for precise, site specific and  real-time N management tools for minimizing 
N loss, while maximizing yield.

•	 Limited studies on influence of Vegetation Indices (VIs) on soil and plant 
attributes across varying rice growth stages. 

•	 Limited studies focusing on scientific methods for selection of variables or 
indices for use in models for better estimation of soil and plant attributes. Few 
studies on independent variable selection techniques for development of reliable 
and accurate ML models.

•	 Lack of site-specific nutrient management protocols for small landholdings. 
•	 Insufficient and limited use of drone and machine learning models for rice yield 

prediction before crop harvesting with high spatial resolution and accuracy.

3. Initiatives at ICAR-CRRI to address the above research gaps
Looking at the developments and capabilities of drones and sensors, following 
research works were conducted and validated to address some of the challenges 
mentioned in section 2.
•	 Estimation of Soil organic carbon using multispectral sensors mounted on 

drones.
•	 Predicting nitrogen content in rice using drone mounted multispectral imaging.
•	 Recommendation of nitrogen topdressing using drone mounted multispectral 

sensors for small holder’s rice farms.
•	 Rice yield prediction using drone mounted sensors.
•	 In next sections the description about drones, sensors softwares and different 

methodologies adapted for above works are explained in detail. 
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4.  Materials / drones / sensors / softwares used in the study
4.1 Drones / Unmanned Aerial Vehicle (UAV) / Unmanned Aircraft 
System (UAS)
The terms UAV, UAS and drone are often used interchangeably, as they all refer 
to aerial technologies used for remote sensing and aerial data collection. Despite 
their similarities, they are slightly differentiated by their technological aspects.  A 
UAV (Unmanned Aerial Vehicle) is an aircraft that operates without a human pilot 
onboard, controlled either remotely or autonomously. A drone is a more commonly 
used term that typically refers to the same flying vehicle as a UAV (Fig.1). Meanwhile, 
a UAS refers to the complete system that includes the UAV or drone, along with 
the ground control station, communication links, and any supporting equipment 
needed for operation. In most contexts, “drone” and “UAV” are used as synonyms 
to refer to the flying vehicle itself. In 
agriculture, drones are increasingly 
employed for precision farming, 
where they facilitate tasks such as 
crop monitoring, field mapping, 
pesticide and fertilizer application, 
and assessment of plant health using 
multispectral and thermal imaging 
technologies. These applications 
enhance efficiency, reduce resource 
use, and improve yield outcomes 
by providing real-time, data-driven 
insights into crop and soil conditions.

Fig. 1 UAV / drone

4.2 Softwares used in this study
4.2.1	 Software for flight plan mapping

A ground control software was used for real-time flight planning, sensor calibration 
and data acquisition. In agricultural applications, it enables precise control of drone 
flight paths and ensures accurate triggering of sensors at predefined time interval 
for image acquisition. This ensures optimal frontal and side overlap of the captured 
images with a defined altitude and tolerance limit, which are essential for generating 
high-quality datasets used model training and development. In this study Bluefire 
Touch Software (version v4.2.9134.18070)  was used for flight plan mapping and 
drone flying (Fig. 2).
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4.2.2 	Remote sensing image analysis and processing software

An image processing software is used for processing of the captured raw drone 
imagery and transform it into digital surface models (DSMs) and 3D point clouds to 
generate the georeferenced orthomosaics. In agriculture, it plays an important role 
in aligning and stitching captured images, correcting distortions and generating 
spatially accurate orthomosaics, which are further used for generating vegetation 
indices and further geospatial analysis. In this study Agisoft Metashape Software 
(version 2.0.2) was used for image analysis and processing (Fig. 3).

Fig. 2 Generation of mapping plan using blue fire touch software

Fig.3 Image processing and generation of orthomosaics using Agisoft software
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4.2.3 	Spectral index computation and mapping software 

Geographic information system (GIS) platforms are used for advanced spatial 
analysis, mapping and extraction of vegetation indices such as NDVI, NDRE, SAVI, 
etc. from orthomosaic image of drone mounted sensor. Users can assess spatial 
variability in crop health, analyze inter-field variability and integrate various spatial 
datasets for informed decision-making in precision farming. In this study ArcGIS 
Software (version 10.2.2) was used for Spectral index computation and mapping.

4.2.4 Data analytics and predictive modeling software 

Data analytics softwares are used to develop and validate machine learning models 
like Random Forest (RF), Support Vector Machine (SVM), Artificial Neural 
Networks (ANN), etc. using vegetation indices as independent variables and crop 
parameters such as nitrogen content, biomass, yield, etc. as dependent variables. 
This software also enables the application of different machine learning algorithms 
to predict crop parameters and different soil physio chemical properties based on 
drone-acquired data. In this study RStudio Software (version 2025.05.1+513) was 
used for data analytics and predictive modeling.

4.3 Sensors used in this study

4.3.1 Imaging sensor

Multispectral sensors were employed to acquire high-resolution remote sensing 
data across the visible, near-infrared (NIR) and red-edge spectral bands for various 
agricultural applications. These sensors enable precise monitoring of crop health, 
chlorophyll content and nitrogen status through vegetation indices such as NDVI, 
NDRE, etc. Their high radiometric 
accuracy and compatibility with 
UAV platforms make them ideal for 
precision agriculture, supporting site-
specific management of irrigation, 
fertilization and pest as well as disease 
control. In this study MicaSense 
RedEdge-MX multispectral sensor 
(Fig. 4) was used for capturing images 
across five spectral bands (blue, green, 
red, red-edge and NIR).

Fig. 4 MicaSense RedEdge-MX sensor
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4.3.2 Downwelling Light Sensor (DLS) sensor

This sensor measures the intensity and quality of ambient 
sunlight during flight, which is essential for radiometric 
calibration of the captured imagery (Fig. 5). By recording 
real-time light conditions across relevant spectral bands, 
the DLS allows for correction of illumination differences 
caused by changing weather, sun angle or cloud cover. 
This ensures that reflectance values derived from 
multispectral images are consistent and comparable, 
enabling accurate calculation of vegetation indices such 
as NDVI, NDRE, etc. Proper installation and orientation 
of the DLS sensor are also important for maximizing 
data accuracy and reliability. 

4.4 Components of the unmanned Aerial system 
4.4.1 Communication Box (Comm Box)

The Communication Box acts as the central hub for data 
transmission between the drone and the ground control 
station (Fig. 6). It manages real-time communication, 
sending commands to the drone and receiving telemetry, 
sensor data and video feed. In this study  drone, the 
Comm Box ensured secure, stable and low-latency links 
for efficient flight control, payload management and 
handling integration with peripherals like cameras and 
sensors, allowing synchronized data acquisition.

4.4.2	 White calibration panel / white reference panel / white balance card

White panel calibration involves capturing images of a standardized white reference 
panel before or during the flight (Fig. 7). This panel has known reflectance properties 
and is used to calibrate the drone’s sensors for consistent color and spectral 
accuracy. It corrects sensor drift, lighting variations and ensures that the acquired 
images accurately represent the true reflectance of the target surfaces. Together 
with the DLS, white panel calibration is important for acquisition of high-quality, 
scientifically valid remote sensing data.                              

Fig. 5 Downwelling Light 
Sensor (DLS) sensor

 Fig. 6   Communication Box
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  Fig. 7 White Calibration panel

4.4.3 Computer systems for automated flight planning and execution

A suitable laptop system is essential for efficient drone operation, requiring at least 
an Intel i5 or Ryzen 5 processor, 8 GB of RAM, a 256 GB SSD and a reliable battery 
for managing complex flight plans (Fig. 8), ensuring real-time responsiveness 
during automated missions and process large volumes of data accurately, ultimately 
enhancing the safety, efficiency and effectiveness of drone operations. In this study a 
laptop with 12 gen intel core i7 processor, 16 GB RAM and 64-bit operating system 
was used.

Fig. 8 Flight plan software accessed in the laptop for drone flying
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4.5  Methodology of estimation of crop and soil physiochemical parameters 
using drone mounted sensors
Image acquisition and generation of flight plan: The Idea Forge Q4c drone equipped 
with a MicaSense RedEdge-MX consisting of five independent spectral bands 
(Table 1) was used for capturing of high-resolution multispectral images. The 
flight plan was planned using BlueFire Touch ground control software. Before 
flight the multispectral imaging sensor was calibrated using white panel reflectance 
calibration with a known and stable reflectance spectrum. This calibration converts 
raw digital numbers from the sensor into physically meaningful surface reflectance 
values, ensuring data comparability across different acquisition times and sensor 
platforms. After calibration the drone was flown under clear sky conditions with a 
flight altitude of 120 meters, 80% frontal overlap and 75% side overlap for acquisition 
of the multispectral images.

Image processing and calculation of vegetation indices: The calibrated multispectral 
images were processed using Agisoft Metashape Professional software to generate 
the orthomosaics. The orthomosaics were used to calculate Vegetation Indices (VIs) 
(Table 2) representing canopy traits such as chlorophyll levels and green biomass 
cover in ArcGIS software. 

Variable selection and development of machine learning models: and The Variable 
Inflation Factor (VIF) technique was used to reduce multicollinearity and variable 
selection for model building. The selected VIs, along with ground-measured data, 
were used to develop and validate Machine learning (ML) algorithms in R software 
for estimation of Soil Organic Carbon (SOC) and rice Nitrogen (N) content as well 
as rice yield prediction, with datasets split into training (80%) and testing (20%) 
sets. Following ML models were developed.

Random Forest (RF): A machine learning algorithm that uses an ensemble of 
decision trees to improve prediction accuracy by averaging multiple tree outputs 
and reducing overfitting. 

Support Vector Machine (SVM): A supervised learning algorithm that finds the 
optimal hyperplane to separate different classes in the feature space, aiming to 
maximize the margin between them.

Artificial Neural Networks (ANN): A computational model inspired by the human 
brain, consisting of layers of interconnected nodes (neurons) that learn complex 
patterns in data through backpropagation.
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Model assessment: To evaluate the performance of the models, different statistical 
metrics like coefficient of determination (R²), root mean square error (RMSE), mean 
absolute percentage error (MAPE) and mean absolute error (MAE) were used.

Table 1: Wavelength range of different bands in multi-spectral sensor mounted 
on unmanned arial vehicle (UAV).

Sensor Band Number Wavelength Range (nm)

Mica Sense
Red Edge-MX Sensor

Band 1 475 - 560
Band 2 550 - 570
Band 3 668 - 680
Band 4 717 - 740
Band 5 840 - 860

Note: Band 1: Blue; Band 2: Green; Band 3: Red; Band 4: Red Edge and Band 5: Near Infra-red

Table 2: Vegetation indices and their formula

Index Index Formula
NDVI (NIR - Red) / (NIR + Red)
NDRE (NIR - Red Edge) / (NIR + Red Edge)
IPVI 0.5 * (NDVI + 1)
GNDVI (NIR - Green) / (NIR + Green)
SAVI ((NIR - Red) / (NIR + Red + 0.5)) * (1 + 0.5)
MSAVI (2 * NIR + 1 - sqrt ((2 * NIR + 1)2 - 8 * (NIR - Red)))/ 2
CI (Red-Green) / (Red + Green)
CHI (NIR/Green)-1
BI (sqrt ((Red*Red) + (Green*Green)))/2
SRPI B/R
SCCCI NDRE/NDVI
TCARI 3*[(RE-R)-0.2*(RE - G) *(RE/R)]
RVI NIR/R
RERVI NIR / RE
RVI2 NIR/G
GRVI (Green-red)/ (Green+red)

Note: Blue (B), Green (G), Red(R), RedEdge (RE), Near Infra-red (NIR), Normalized Differences Vegetation Index 
(NDVI), Normalized Difference Red Edge (NDRE), Green Normalized Difference Vegetation Index (GNDVI), Soil 
Adjusted Vegetation Index (SAVI), Modified Soil Adjusted Vegetation Index (MSAVI), Colour Index (Colour), 
Chlorophyll Index (CI), Brightness Index (BI), Chlorophyll Index (CHI), Simplified Canopy Chlorophyll Content 
Index (SCCCI), Transformed Chlorophyll Absorption and Reflectance Index (TCARI), Ratio Vegetation Index (RVI), 
Red Edge Ratio Vegetation Index (RERVI), Modified Green Red Vegetation Index (MGRVI), Ratio Vegetation Index 
2 (RVI2) and Green Red Vegetation Index (GRVI).
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5. Estimation of Soil organic carbon using multispectral sensors 
mounted on drones.
Site details

The study was conducted at ICAR-Central Rice Research Institute, Odisha, India 
(20°25’N, 85°55’E; elevation 24 m above mean sea level). The region experiences a 
sub-humid tropical climate, with an average annual rainfall of 1500 mm and a mean 
yearly temperature of 27.6 °C during the study period. The soil in the study area is 
classified as Aeric Endoaquepts, with a sandy clay loam texture comprising 31% 
clay, 17% silt, and 52% sand and a bulk density of 1.4 Mg/m³.

Sampling procedure

The experimental plots were ploughed with two pass of cultivator and one pass 
of rotavator followed by laser land levelling. A systematic grid-based sampling 
strategy was employed, comprising 132 sampling points that were evenly 
distributed across the A and B blocks of the CRRI experimental farm (as illustrated 
in Fig. 9). To facilitate accurate sample collection, the boundaries of each block and 
the coordinates of all sampling locations were digitized using ArcGIS software and 
physically identified in the field. At each designated point, three soil samples were 
collected, which were then composited into a single sample for each location. These 
composite samples were analyzed for soil organic carbon (SOC).

Sampling analysis

The measurement of SOC was conducted by employing the oxidation method, 
utilizing potassium dichromate (K2Cr2O7) in the presence of concentrated sulfuric 
acid (H2SO4), following the procedure outlined by Walkley and Black (1934). 
Remote sensing data was acquired on June 6, 2023 using drone mounted with a 
multispectral sensor (which captures images in five independent spectral bands). 

Vegetation Index generation

Nine vegetation indices were computed from drone data, based on the strength of  
correlation with SOC, analyzed in R software four indices NDVI, NDRE, IPVI and 
GNDVI were derived selected for model development.

Here are some of the case studies of utilising drone and sensors at ICAR-CRRI 
Cuttack as well as other districts of Odisha.
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Fig. 9 Sampling locations in experimental plots of ICAR-Central 
Rice Research Institute, Cuttack, India

5.1 Machine learning algorithms (ML) for SOC estimation
Random Forest (RF) and Support Vector Machine (SVM) models were developed 
to predict SOC. The dataset was split into 70% training and 30% testing datasets. 
The value of the predicted SOC from both the ML models were compared based 
on the accuracy parameters and the best fit model was used to generate the spatial 
distribution map of SOC content at the test site. The SOC estimation accuracy of 
the developed machine learning models was also compared using two different 
datasets: one generated from UAV-based imagery and the other from Sentinel-2A 
satellite data.

Fig.10  Soil Organic Carbon Prediction map for the study sites.
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5.2 Generation of predicted SOC map
The output from both the models were compared based on the accuracy parameters 
and the best fit model was used to generate the spatial distribution map of SOC 
content in the test area.

Results

The estimated SOC content at the test site ranged from 0.405% to 0.685% as 
represented in Fig. 10 (Tripathi et al., 2024c). DRONE derived VIs showed stronger 
correlations with SOC. The Prediction accuracy for RF model (RPD = 1.09, R² = 
0.25) was better in comparison with SVM model (Table 3).

Table 3: Accuracy parameters of Random Forest (RF) and Support Vector 
Machine (SVM) for estimation of SOC 

Parameters RF SVM
UAS Sentinel 2A UAS Sentinel 2A

RMSEcv 0.06 0.07 0.06 0.07
RPD 1.09 0.96 1.02 1.01
R2cv 0.25 0.1 0.2 0.1
RPIQ 2.57 0.79 2.01 0.85

Note: Root Mean Square Error of Cross-Validation (RMSEcv), Ratio of Performance to Deviation (RPD), Coefficient 
of Determination of Cross-Validation (R²cv), Residual Prediction Deviation Index (RPIQ), Random Forest (RF) and 
Support Vector Machine (SVM)

Salient findings: 
•	 The results from the correlation matrix indicated that drone derived 

vegetation indices showed stronger correlation with SOC.
•	 This study compared the prediction accuracy of two ML models i.e. RF and SVM.
•	 The SOC prediction accuracy for RF model was higher in comparison with 

SVM model.
•	 UAS dataset shows higher prediction accuracy than Sentinel 2A dataset for 

both the ML models. 
•	 The integration of drone-based SOC prediction techniques in precision 

agriculture can facilitate targeted soil management strategies which can 
contributes to improve resource utilization, soil health, and crop productivity.

•	 Drone based SOC predictions can support regulatory compliance and carbon 
trading initiatives 
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8. Rice yield prediction using drone mounted sensors
Site details

The experimental locations were within geographic coordinates ranging between 
20°23’16” to 20°27’03” N latitude and 85°55’52” to 86°07’47” E longitude (Fig. 25). 
The experiments were conducted both at the research farm of ICAR–Central Rice 
Research Institute and on farmers’ fields in Prahrajpur village, located in Cuttack 
district, Odisha, India. The experimental sites experiences a sub-humid tropical 
climate, receiving an average annual rainfall of about 1500 mm.

Experimental details of  Model development

The experiments for developing the ML models was conducted at the ICAR–CRRI 
experimental farm, using two rice varieties Pooja and Swarna with a growth duration 
of 145 – 150 days. Eight nitrogen application rates (0, 20, 40, 60, 80, 100, 120 and 
140 kg ha-1) were used to create yield variability in rice (Fig.26). The experimental 
layout followed a Randomized Block Design (RBD) with four replications.

Experimental details of  Model validation

The developed models were validated at Prahrajpur village using six nitrogen 
application rates (0, 40, 60, 80, 100 and 120 kg ha-1). At all experimental sites, 
phosphatic and potassic fertilizers were applied as per the recommended doses of 
40 kg P₂O₅ and 40 kg K₂O per hectare. The rice varieties used in the farmers’ field 
experiments were Pooja and Gayatri.

Harvesting and recording yield 

Rice plants from both the research farm and farmers’ fields were harvested manually 
using hand-held sickles, cutting close to the soil surface. The harvested crop was 
then sun-dried to reduce the moisture content to 14%. After threshing, the rice 
grains were cleaned and weighed. The grain yield was calculated and expressed in 
tons per hectare (t ha-1).

Fig. 25 Location of study sites in Cuttack district of Odisha in India
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Multispectral image acquisition 

The multispectral images (5 independent spectral bands) were captured on 
September 11th , 2023 at  ICAR-CRRI and on September 28th , 2023 at farmers’ field. 

8.1 Correlation analysis and Variable Selection:
The correlation analysis between rice yield (dependent variable) and 10 VIs 
(independent variable) was performed in R software (Fig. 27). The variable selection 
was performed using variance inflation factor (VIF) technique. The VIF technique 
selected 4 VIs (MGRVI, NDVI, NDRE, TCARI) with VIF < 10 for model building.

Fig.  26  Field experiment conducted with two rice varieties and eight different levels of nitrogen 
at ICAR-CRRI experimental farm, Cuttack 
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Fig. 28  Prediction maps for the testing plot using SVM (a), RF (b) 
and ANN (c) model and the observed rice yield for the test plots (d)

Note: one (*), double asterisk (**), and three asterisks (***) indicate a correlation coefficient (r) with statistical 
significance levels of p-value ≤ 0.05, 0.01, and 0.001, respectively. MGRVI: Modified Green Red Vegetation 
Index; NDVI: Normalized Difference Vegetation Index; GNDVI: Green Normalized Difference Vegetation NDRE: 
Normalized Difference RedEdge Index; RERVI: Red Edge Ratio Vegetation Index; SRPI: Simple Ratio Pigment 
Index; RVI: Ratio Vegetation Index; SCCCI: Simplified Canopy Chlorophyll Content Index; RVI2: Ratio Vegetation 
Index 2; TCARI: Transformed Chlorophyll Absorption and Reflectance Index

8.2 Development of machine Learning models 
Three ML algorithms were developed in R software. The SVM model was tuned 
using radial basis kernel, grid search technique with a cost value of 2, gamma value 
of 0.125 and epsilon value of 0.1. The RF model was tuned with a ntree value of  30 
and mtry value of 2. The ANN model was hypertuned with 1–9 neurons, decay 

Fig. 27 Correlation matrix between vegetation indices and yield. The selected key variables for early rice. 
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value of 0 to 0.01and 5-fold cross-validation. The dataset was split in the ratio of: 
80% training and 20% testing. Raster package used to generate yield prediction 
maps at validation sites using SVM, RF and ANN models. 

8.3 Comparison of predicted and observed yield
The on-field rice yield at the test site ranged from 2.95 to 5.82 t ha-1. The NDRE had the 
highest coefficient of variation (CV) of 34%, while NDVI had the lowest CV value of 
11%. The NDVI value showed the strongest positive correlation with yield with R2 value 
of 0.67, followed by RVI with R2 value of 0.64. Among the VIs higher correlations was 
observed in RERVI and NDRE indices with R2 value of 0.99 and NDVI and RVI index 
with R2 value of 0.95. The VIF technique was used to select important VIs having greater 
significance in yield prediction and to minimize multicollinearity. The selected VIs is 
TCARI, NDRE, MGRVI and NDVI. The 
SVM model had the highest accuracy with the 
values of accuracy parameters (RMSE: 0.55, 
MAE: 0.39, MAPE: 9.33) compared to RF and 
ANN. The predicted yield for different models 
was for SVM (3.73–5.45 t ha-1), RF (3.83 – 5.00 
t ha-1) and ANN (3.46–5.91 t ha-1) (Fig. 28). 
The SVM model showed moderate to high 
accuracy with R² value of 0.88 when compared 
with observed yield (Fig. 29).

Fig. 29 Scatter plot comparing observed 
and predicted yield (t ha-1) at farmers’ field

Salient findings:
•	 The study demonstrated that drone-mounted multispectral sensors effectively 

predicted rice yield at the panicle initiation stage, aiding management 
decisions and policy formulation.

•	 The SVM model showed moderate to high accuracy (R² = 0.62) in predicting 
yield, demonstrating its potential for yield estimation.

•	 Among various derived vegetation indices, NDVI, NDRE, TCARI, and 
MGRVI indicated were strongest predictor for yield.

•	 The accuracy of these models can be further improved by multi-season and 
multi-location data for scalable and adaptable prediction models.

•	 Drone based yield monitoring offers high-resolution, non-destructive and 
cloud-independent management technology ideal for precision agriculture, 
making it a valuable tool for real-time crop assessment.
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9. Conclusions
This study highlights the potential of drone-mounted multispectral sensors in 
precision agriculture, enabling accurate estimation of SOC, N levels and rice yield 
using machine learning models such as RF, SVM and ANN. Model performance 
varied, with R² values ranging from 0.55 to 0.67 for N and 0.60 to 0.65 for yield 
prediction, while the RMSE values for all the developed models varied from 0.03 
to 0.07. NDRE index was the most significant index for N estimation and NDVI, 
NDRE, TCARI, and MGRVI indices were the most influential  predictors for rice 
yield.  The INSEY based plot specific N recommendation achieved higher yields 
with AUE values of 19.18 kg kg-1 and PFPN of 73.70 kg kg-1 compared to RDF 
and CLCC, demonstrating the effectiveness of precision N management over 
traditional N management methods. To upscale and enhance the reliability and 
accuracy of the developed ML models, incorporation of multi-location and multi-
season data is recommended. This approach can significantly reduce the cost and 
time required involved in traditional methodologies used for soil and plant variable 
analysis associated, while minimizing the one-time cost involved in installing the 
setup. Additionally, government initiatives such as Drone Didi and Kisan drone 
are promoting the use of drone technology for agricultural management practices 
by providing financial support to farmers, making precision agriculture more 
accessible and efficient for small and marginal farmers.

10. Potential of drones and sensors and their future applications 
in agriculture
•	 Apart from the ML models used in this study, other ML models should be 

explored to get better prediction of soil and plant variables.

•	 The crop simulation models may be integrated with inputs generated from 
drone-mounted sensors for reasonable application.

•	 Weather and climatic parameters may be integrated for accuracy in site-specific 
nutrient management.

•	 Different kinds of sensors, i.e., multispectral, hyperspectral and thermal sensors, 
can be used for assessing crop, water and nutrient stresses along with other 
biotic stresses.

•	 Low-cost sensors like RGB should be utilized for wider adaptability across 
different stakeholders, including farmers.
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